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FCRCE_AT A POINT IN THE INTERICR OF A SEMI-INFINITE SOLID

dntroduction

In a paper(l) under the same title, the solution of the linear equa-~
tions of equilibrium of an elastic body was given {or the case of a force
acting at a point within an isotropic body bounded by a plane. The result
was obtained by starting with Kelvin's soluticn for a force in an infinite
body and guessing the nuclel of strain to add outside of the semi-infinite
body =0 as to annul the tractions on the plane boundary. In the present
paper it is shown how these results mav be obtained, directly, by means of

an application of potential theory.
Papkovitch Mupetions

In an isotropic elastic body in equilibrium, the displacement u is
governed by the equation (2)

2
_%_. AvE = (1)
vhere L is the shear modulus, V is Polsson's ratio and F is the body
force per unit of volume,

For an isotropic body, the stress, ¢ 4 is related to the displace-

ment by

¢ = 2%ul + u(Vu + uv) 2)

(1) R, D, Mindlin, Paysies, Vol. 7 (1936), pp. 195-202.

() For the vector notation used in this paper, see C, E, Wsatherbumrn,
Advanced Vector Analysis, G. Bell and Sons, Ltd., London, 1928,
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where A = 2;“/('-21/).
By Helmholtz's t’.heorom\3 ), U may be resolved into lamellar and sole-

noidal components:

g=Y(( + Y-H, V-H=0, (3)
so that (1) may be written
MV Ve +VxH) + F =0 (4)

where o = 2(1-7)(1-2v).

The quantity in parenthesis in (4) is a vector, say, B = ( B + Ja_, +k B

ioeo,
xS +VxH=B , (5)
/{92§=—E . 6)

Operating on (5) with V-, ve find

aVig = V-8B (7)

L)

the complete solution of which is
2a¢ = r'B +p2 (8)

vhere £ 1is a scalar function, which satisfies

/V?ﬁ: IE 5 (9)

and f=LX +jy +RZ 4is the position vector,

Substituting (8) in (3) and eliminating YxH by means of (5), there

results

(10)

(12)

(3) 'nleatherbux‘n, P bhye
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u V‘/g = rf_" ) (12)
Thus the displacement is expressed in terms of the Papkovitch functioms, @
and £ 4 whose laplacians are known if the body force F 1is known.
The proof of completeness of the Papkovitch functions, given above,

is an extension, to include the body force, of one given in a previous

(5)

paper(l‘), where B and 8 were called Papkovitch functions after the

originator of the solution (10) of the elasticity equations. Recent writsrs
associate these functions with the name of Boussinesq (6), vho introduced B,

and 2 4 but employed functions of a different type where B8 and B, could

have been used.
Green's Formula

The value of a function V , at any point in a region, may be ex-
pressed in terms of its walues at the boundary, its laplacian and Green's

functiony G , for the region, by means of Green's formula (7)
-*"V:SIVQVGJS +fG V’Vdv ) (13)
For the region 2 3 0 , Green's function is

G =" - ()

where

(4) R. D. Mlndlin, Bull, Am, Math, SOO., Vol. 1‘2 (1936), PPe 373"3760

(5) P, F. Papkovitch, Comptes Rendus, Acad. des Sciences, Paris, Vol. 195
(1922), pp. 513-515 and 754-756.

(6) J. Boussinesq, "Appligation des Potentiels & 1'Etude de l'ﬁquilibre ot
du Mouvement des Solides Elastiques," Gauthier-Villars, Faris, 1885, pp. 63

and 72,

(7) Weatherburn, p. 34.
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= (x-gf + (-9 + (z-3) (15)

Rt -8y + (- 4+ (z+3) (16)

in vhich (X,y,Z ) are the conordinates of a point P(x,y,z ) in the region 5

and (3, 7,3 )y (g,’p)—; ) are the coordinates of a source point Q(E.'Z )
and its image Q'(§, 7 -5 ), respectively.

Force at a Point

Eelvin's definition of a force at a point takes the following form,

in the present case. Consider a distribution of body forces £ in a closed

region T within z >0, vith F =0 ocutside T but within z » 0. uimirish

T indefinitely, always enclosing the point C (0,0,¢ ), but let

Lim [Fdv = P (17)
T+0 4= -

where E is a constant force at C,

For later use, we note that the limit, as T approaches zero, of

Q5 3) =clooc) (18)
Q(s5,7,-3) =¢’(6,0-¢) , (19)

2 2 a 1 a2
r'=x'+y +(z-—c) =R (20)
e Xyt @] =R (21)

Gy — 1

Q' Rz 2 (22)

26 _ _ 2 L, !
23 B &z R, R, ! (23)

G - L (

23T T 3z*\R~ R )’ 24)
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236 _ _ 3|1
ag o ax E.“‘?!:) . (25)

In this case we take F = F, =0 and B, = Bj =0. The remaining
Papkovitch (in this case Boussinesq) functions, B_and & , must satisfy
the condition of venishing traction on z = 9. Thus, we have, fram (2)

and (10), on z=0

f (‘_ _4—] (26)
oo [ -3 5T =0, @

L~ (e By -l @

The function in brackets in (26) is one whose laplacian

vl}(w)”s‘ 34—]—-—@3 ~ Lzizk (29)

z M 3z
is lnown throughout 2z > 0 and whose boundary value is zero. Hence, by (13),

38 34 r.:

Now, integrating the first term in the volume integral by parts,

fffe g—;ﬁ— dedydy = fff F,drd?y —fffﬁ %d;afyd;.m)
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The surface integral in (31) vanishes because F =G =0 on the boundary of

the body. Then, hy (17) and (23),

3 dF, _ o ! !
T0 G 3 dv = K 32(7?'+‘§;—) . (32)

Similarly, integrating by perts twice and using (17), (18) and (24),

2

oy [ =crEx (%) (33)
Hence

2(| v)B 3é— 3_—,‘,‘_}—‘—[20 v) 7 -;,—)4» CE"(‘R )])(31.)

where one integration with respect toz has been performed. (The arbitrary
function of X and y , thereby introduced, must vanish since 2(i-¥)B,- 2802
must vanish as Z —o0°),

Returning to the boundary conditions, we note that (27) and (28)

can be integrated with respect to x and ys respoctively, so that, oo Z =0,

(-2v)B,— 28- =0 . (35)
The laplacian
v [(-w)g - 28] -~ S2r g - L 3R o)

is known throughout z > O and hence, by (13),

(I-ZV) -2 - +Tfﬂf [(l W) F, +5?§-(§F,)Jdv . 37)




By the same process as baforw, using (17), (18), (22) and (23), we find
-\

(-2v)e, - 3% - & |- 1")('2 -,%+ c,’;’;(—t{ + —k;)J . (38)
Finally, from (34) and (38),

: _ B 1L, 34y ac(z+c) \
B, = 4Wﬂ[ﬁ+ R, + R ] (39)

Ha N-29).Log(R +24c)- & - & "L” L] . (40)

These two functions constitute the solution for the case cf the force

at (00 ) normal to the plane boundary.

tg the P e unda

In this case we take Fy=Ff =0 and Bx =0. The boundary condi-

tions then become, on z2=0 |,

M 28, 38y ‘8 :
e =2(/--y) Z(I 1) +21v X Xaaz‘z = af =0 (41)
2 28 ‘85; 3'B 2s |_
Tx = 7'(737)[("2 ”) %+ ) X Bxsz x9z]" 0 (42)
38 9'Bx 3@ -
Gy =3 I > (l 1Y) 5 R X 3y3z ~ 3y5Z o . (43)

Differentiating (42) with respect toy and (43) with respect to x and sub-

tracting, we findy, on 2=0 ,

EE N
Hence, on z =0,
9B
=7

T o em—— iy e e




Alsoy in 250 ,

v? o8B, _ _ 1 2F
2z - M 2z
Hence, from (13),
2 _ 1 DF,
2z Anu fG 2y dv

by (32). Thus
5 =__a_(_\§+_§l\_) , s)

From (43)y on z=0 ,

("27)81“ %i. - xQ_BJ—zo

by (44). Also, in z 50

o[-~ 3] -2 3 .
Hence, by (13)
2 (‘
("27’)81" azﬁ = 41';-/4J G’f‘g?“’d\' . (46)

But the right hand side of (46) vanishes since ¥ —0 as T— 0. Hence
(-2v)B, — §£&- =0 47)

throughout the region z 4.

From (41)y on 2 =0,




2(-v) $== 38’ —44—)1/——“8 = ——:—3028‘ =0 (48)

Nowy on Z=0 , we have, from (45),
3B« _, 2'B, _ng)_P_k,g___BPc’x
WV Ix T TX ez T Inuk 2MUR?®

where E’olrx‘ +y‘+c‘1 . But, onz=0,

(I-2v) R x
- (’ Zv) X T ITuR,
and
Be 2 (1 \_ 3Rcx
2T 2x0Z\K, 2mu K,

Hence, (48) may be rewritten as

= 2(-) 35 - 25 — (- -2v) 32 - ur,u bxaz(;—?\) O3

on Z=0 . The laplacian of the left side of (49) is, in the regiom z >0,

a
2 X ? F! -2V 9K
v X T T 2z M 'o; ¢

Hence, from (13),
X = T"'.—/u——fG[g ?;-%r - (l—lv)—g—?—-] dv . (50)

The first term in the integrand vanishes since £ =0 es T-—>0. The second
term is integrated by parts and the surface integral vanishes, leaving

- 1-2¥ 26




wvhich, by (17) and (25), 1s

Xz...tJ_V).R_a-('__E'T) . (51)

4mu  2x \R

Then, from (51), (49) and (45), i

28, 22 _ _ (-2v)Rx 3Rcx(z +¢)
2('"") 2z ¥z* ITURT * Twu R (52)
or
R - 98 _ (-29)Rx _ P.Cx

2

Mnally, from (53) and (47), we have

_ (-2v)Rx Pcx

B = R RIzve) T IMuRT (54)
_ (u—zyTax (1-2V) R cx

f =~ Inumrz+c) T ImuR(Rizic) %)

These two functions, in addition to (45), comprise the solution for the

case of the force at (90 c ) parallel to the plane boundary.

Cogparigon with Previous Regults

The previous solution, mentioned in the Introduction, was given in
terns of the Galerkin vector F (not to be confused with the body force F
in the present paper).

For the case of a force normal to the plane boundary the solution

obteined was

e B ) ST S oo N S SO
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S — st £ & 0 0

f=%5-7r{"‘ Hruled 1R - 2ez/k (s¢)
5 4(:—2V)[("")2 - ve | teg(R, +2 *C)}

and, for the case of a force parallel to the plane bhoundary,

F =ik R +R -2k
“ T.’(T_V)—_ ) 2 2
g { + 4{|-v)(|-1v)Kz rc) Log (R +z +c)- Rg]}

_’_%&;)_ {JZCX/I?‘1 +2(|-lv)x,b?(a.\.z+c)} . (57)

The relation between the Gaierkin and Papkovitch functiona has been

shown to be‘

wuB = (I-¥)V*E (58)

ME8 = (l‘ V)()-YE _!"'sz) (59)
By inserting (56) and (57) in (58) and (59), it may be verified that

the previous and present solutions are idenmtical.

~11-




	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017



